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Abstract
Photoluminescence measurements were carried out on Be δ-doped GaAs/Al0.33

Ga0.67As heterostructure at 1.6 K in magnetic fields (B) up to 4 T. Luminescence
originating from recombination of a two-dimensional electron gas (2DEG) and
photoexcited holes localized on Be acceptors was analysed. The degree of
circular polarization (γC) of the luminescence from fully occupied Landau
levels was determined as a function of B and the 2DEG concentration, ns.
At constant B , γC decreased with the increase of ns. The intensity of the
optical transition considered was calculated, taking into account the s-like and
d-like parts of the acceptor envelope function. It is shown that the presence
of the d-like part explains the observed γC(ns) dependence quantitatively. Two
other possible mechanisms of the γC(ns) dependence were excluded: the Stark
effect on a hole bound to a Be acceptor and the Pockels effect, i.e. the in-plane
anisotropy induced by the heterostructure electric field. Thus, it is shown that
polarization spectroscopy on acceptor δ-doped heterostructures enables one to
test experimentally the contribution of the L > 0 component of the envelope in
a shallow acceptor description.

1. Introduction

In acceptor δ-doped GaAs/AlGaAs heterostructures, a diluted sheet of acceptors is introduced
some tens of nanometres from the GaAs/AlGaAs interface, and a two-dimensional electron
gas (2DEG) is created due to doping of a barrier with shallow donors. A photoluminescence
experiment on such structures reveals (among other features) a spectrum corresponding to the
recombination of 2D electrons with holes localized in the δ-layer. An analysis of the degree of
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circular polarization (γC) of this transition as a function of the magnetic field (B) allows one to
investigate the spin polarization of a 2DEG in the regime of the integer and fractional quantum
Hall effects [1]. An interpretation of experiments presented in [1] was based on a model in
which the ground state of a shallow acceptor in GaAs was described by an s-like envelope
function (the ‘L = 0 model’). According to this model, γC depends only on the magnetic
field and the temperature (T ): the magnetic field splits the electron and hole levels, which are
populated according to a thermal distribution at given T . Within this approach, the properties
of a 2DEG could have been analysed because the properties of holes localized on acceptors
were assumed to be known.

According to our experimental studies, γC also depends on the concentration of the 2DEG
(ns) when B and T are constant. To explain the effect observed, we analyse three mechanisms:
the Stark effect on a photoexcited hole bound to a Be acceptor (mixing of hole levels by
the heterostructure electric field), the Pockels effect (in-plane anisotropy of optical transitions
induced by the heterostructure electric field), and an influence of a d-like part of the acceptor
envelope on γC. We show that the Stark and Pockels effects are negligible in the heterostructure
investigated, and it is the presence of a d-like part of the envelope that is responsible for the
γC(ns) dependence observed.

The paper is organized as follows. Sections 2 and 3 describe the experimental procedure
and results. Section 4 contains a theoretical analysis of the intensity of the optical transition
considered, the results of calculations and their comparison with experimental data. It is shown
that γC calculated within the spherical model which takes into account both s-like and d-like
parts of an acceptor envelope (the ‘L = 0, 2 model’), describes the experimental γC(ns)

dependence quantitatively. In section 5, we estimate changes in γC resulting from the Stark
and Pockels effects. Finally, we summarize and conclude the paper.

2. Experiment

The sample under investigation was a high-quality GaAs/Al0.33Ga0.67As heterostructure grown
on semi-insulating GaAs substrate. The GaAs channel of about 1 μm above 50 periods of
5 nm/5 nm GaAs/AlAs superlattice contains unintentional acceptors at a concentration less
than 1014 cm−3. The AlGaAs barrier comprises an undoped 45 nm thick AlGaAs spacer and
a uniformly Si-doped 35 nm thick AlGaAs layer; the doping level amounts to 1018 cm−3. The
δ-layer of Be atoms with the concentration of 109 cm−2 was introduced into the GaAs channel
at the distance z0 = 30 nm away from the GaAs/AlGaAs interface. The barrier was covered
with a 15 nm thick GaAs cap layer.

The measurements were carried out in an optical helium cryostat supplied with a split
coil. All measurements were carried out at 1.6 K, and the temperature was stabilized within
0.02 K by pumping the helium gas through a manostat. The luminescence was excited by a
He–Ne laser. All data presented in this paper were obtained at the same laser excitation power.
The power of excitation was a few mW cm−2, and was a few orders of magnitude smaller
than that corresponding to a saturation of the luminescence signal. Both continuous-wave
(cw) and time-resolved measurements were performed. In the latter case, laser pulses were
generated by passing the laser beam through an acoustooptical modulator driven by a generator
of rectangular voltage pulses. The time resolution was 5 ns. The luminescence passed through
a λ/4 plate followed by a quartz linear polarizer. The circular polarizations were separated
by turning the λ/4 plate. The luminescence was analysed by a spectrometer supplied with a
charge-coupled device (CCD) camera (for cw measurements) or with a photomultiplier (for
time-resolved measurements). In the latter case, the photomultiplier signal was directed to a
photon counter.
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Figure 1. Examples of the time dependence of the σ− (solid squares) and σ+ (open squares)
components of the luminescence from N = 0 LLs for two values of B and applied gate polarizations
(indicated). Each σ− signal was scaled to coincide with the corresponding σ+ signal. The exciting
laser pulse ends at about 270 ns.

A semi-transparent Au gate electrode and an ohmic contact were fabricated on the sample
surface, and the concentration of the 2DEG was tuned by polarizing the gate in the backward
direction. ns was estimated by determination of the magnetic field, Bν=2, at which the
luminescence from the N = 1 Landau levels (LLs) disappears (two Landau levels correspond
to each N). Then ns = 2Bν=2/(h/e), where e is the electron charge and h is the Planck
constant.

3. Results

Figure 1 shows examples of the temporal evolution of the luminescence signals measured in
σ+ (open squares) and σ− (solid squares) circular polarizations. The σ− data were multiplied
by a constant factor to coincide with the σ+ data. Corresponding σ+ and σ− signals are
proportional one to each other over the whole time domain, both within the laser pulse, and
after the pulse end. This means that the degree of polarization does not depend on time (within
the time resolution of the present experiment), which indicates that the system is stationary and
time-resolved polarization measurements give the same value of γC as cw measurements. We
used this fact to analyse polarization data obtained from cw measurements, which essentially
improved the signal to noise ratio. The fact that the system investigated is stationary does not
necessarily mean that the distribution of holes on acceptor levels corresponds to the temperature
of the helium bath surrounding the sample. We refer here to time-resolved polarization studies
on similar structures [2] which show that at 1.6 K the relaxation time of photoexcited holes
on the acceptor levels is of the order of 10−10–10−9 s. This is a few orders of magnitude
shorter than the luminescence decay time, which is of the order of 10−7 s, as can be deduced
from figure 1. For this reason, we can assume that photoexcited holes are distributed on the
acceptor levels according to an equilibrium thermal distribution corresponding to the helium
bath temperature of 1.6 K.

The problem of distribution of electrons is avoided in the present considerations because
we take into account the luminescence originating from fully occupied Landau levels only.
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Figure 2. (a) Evolution of the luminescence spectrum with the magnetic field B (indicated). LLs
of the ground electrical subband and the peak corresponding to the first excited (E2) subband are
visible. The LLs are labelled with their number, N . In this case, the N = 1 peak disappears
at Bν=2 ≈ 3.3 T. The spectra are vertically shifted for better presentation. (b) An example of
deconvolution of a luminescence spectrum into Lorentzians.

An example of the magnetic field evolution of the luminescence spectrum is shown in
figure 2(a). With an increase of B , the number of populated LLs of the first electrical subband
decreases as their degeneracy grows. The analysis of the polarization of the luminescence
starts with a deconvolution of each spectrum into separate Lorentzian peaks corresponding to
pairs of LLs (figure 2(b)). We subtract from the total spectrum Lorentzians corresponding
to the second electrical subband and the highest in energy pair of LLs of the first electrical
subband (E2 and N = 3 peaks in figure 2(b)). This leaves that part of the spectrum which
corresponds to an equal number of LLs occupied with spin-up and spin-down electrons, i.e.,
to a totally unpolarized electron gas. The area of that part of the spectrum (Iσ+ or Iσ− for σ+
and σ− polarization, respectively) is used to calculate γC = (Iσ− − Iσ+)/(Iσ− + Iσ+). This
procedure allows one to determine γC at given B for different ns. The results are shown in
figure 3(a). Clearly, γC depends on ns, and to interpret this result is the purpose of the present
paper.

4. Polarization of the �6 → �8 transition within the spherical model of an acceptor
ground state

The interpretation of the γC(ns) dependence observed is based on calculations of matrix
elements of the optical transition considered within the following model. The ground state
of the system is represented by an ionized shallow acceptor located at z0 = 30 nm from the
heterostructure interface. The excited state is given by an electron which is created in one
of Landau levels and a hole in the shallow acceptor ground state. We use an approximate
description of the excited state neglecting the Coulomb interaction between the electron and
the neutral acceptor, i.e., we neglect the excitonic effect for the exciton bound to an ionized
acceptor. An experimental argument supporting this approximation is a linear (not quadratic)
dependence of the luminescence energy on the magnetic field.
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Figure 3. (a) Measured γC(ns) dependence for 1 T (squares), 2 T (circles), 3 T (triangles) and
4 T (diamonds). Dashed lines are (shifted) results of model calculations. (b) Model calculations of
γC(ns)within the L = 0, 2 model for 1 T (squares), 2 T (circles), 3 T (triangles) and 4 T (diamonds).
Dashed lines are linear fits. Points for ns = 0 result from the L = 0 model.

We apply the dipole approximation for optical transitions and the one-electron description
of electronic bands. Then, a matrix element of the transition is proportional to 〈ψi | p̂1,±1|χ j〉,
where |ψi 〉 and |χ j〉 are the one-electron Landau and acceptor states, respectively, and
subscripts i and j represent appropriate sets of quantum numbers. The electronic χ j(r)
wavefunction is obtained by the time reversal of the bound hole wavefunction. The component
+1(−1) of the momentum operator ( p̂1,±1 = ∓( p̂x ± i p̂y)) is used according to the circular
polarization σ+ (σ−) of the emitted photon.

In our calculations, the effective mass approximation has been used for the description of
electronic wavefunctions. We also assume that the electron effective mass in the 2D conduction
subband is isotropic and we use the spherical approximation of the shallow acceptor in the
bulk GaAs, as described in the paper by Baldereschi and Lipari [3]. With all the above
approximations, we find that our system exhibits a cylindrical symmetry with respect to the
axis perpendicular to the interface and passing through the acceptor location. In calculations,
we choose this axis as the z-direction of the coordinate system. The projection of the angular
momentum on this axis is a good quantum number, and it is equal to 0 for the ground state and
±1 for excited states of the system investigated.

The electron wavefunction in the nth electric subband has the form ψi =
ψn(z)ψN,m(ρ)eimφ , where ρ = √

x2 + y2 and φ is the azimuthal angle in the xy-plane.
The envelope ψn(z) results from the self-consistent solution of the Schrödinger and Poisson
equations. In these calculations, the overall charge neutrality was guaranteed by taking into
account interface and surface charges, which also simulate the effect of the gate electrode and
which are used to control the concentration of the 2DEG in the heterostructure. The results of
the calculations are the subband energies and wavefunctions as a function of the total 2DEG
concentration ns. We note that, in our model, ns influences γC via ψn(z) functions only.

The functions ψN,m(ρ) are analytical solutions of the Shrödinger equation in the
symmetric gauge for the vector potential corresponding to the magnetic field �B‖ẑ. N is the
Landau level number and mh̄ is the zth component of the angular momentum (m � N).
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Therefore, the wavefunction of an electron on a Landau level is given by

ψi (r) = ψn,N,m, jz (r) = ψn(z)ψN,m(ρ)e
imφu j= 1

2 , jz
(r), (1)

where u j= 1
2 , jz

= |R0,
1
2 , j = 1

2 , jz〉 is the Bloch wavefunction at the minimum of the
conduction band in the bulk GaAs. It is an eigenfunction of the total angular momentum with
j = 1

2 and it is built with an s-type orbital R0 and the spin 1
2 .

The ground state of a shallow acceptor is fourfold degenerate, and each of the four one-
electron wavefunctions χ j(r) can be obtained by the time reversal of the appropriate one-hole
wavefunction. In the spherical approximation, the ground state is an eigenstate of the total
angular momentum F = 3

2 and [3]:

χ j = χ 3
2 ,Fz

= | 3
2 , Fz〉 = f0|0, 3

2 ,
3
2 , Fz〉 + f2|2, 3

2 ,
3
2 , Fz〉, (2)

where f0 and f2 are radial functions and |L, J = 3
2 , F = 3

2 , Fz〉 are built with spherical
harmonics YL M and Bloch functions u J= 3

2 ,Jz
= |R1,

1
2 , J = 3

2 , Jz〉. The latter functions

are, in turn, built with sp3 orbitals R1 and the spin 1
2 . We choose the basis u J= 3

2 ,
3
2

=
1√
2
(X +iY )α, u J= 3

2 ,
1
2

= i√
6
((X +iY )β−2Zα), u J= 3

2 ,− 1
2

= i√
6
((X −iY )α+2Zβ), u J= 3

2 ,− 3
2

=
i√
2
(X − iY )β , where X , Y and Z are functions transforming like x , y and z under operations

of the Td symmetry group, respectively [4].
The transition matrix elements are

〈ψn,N,m, jz | p̂1,±1|χ 3
2 ,Fz

〉 =
∑

L=0,2

〈n, N,m, jz | p̂1,±1 fL|L, 3
2 ,

3
2 , Fz〉

=
∑

L=0,2

L∑

M=−L

C
3
2 ,Fz

L ,M, 3
2 ,Fz−M

〈R0,
1
2 ,

1
2 , jz| p̂1,±1|R1,

1
2 ,

3
2 , Fz − M〉

×
∫
ψ∗

n (z0 + z)ψ∗
N,m()e

−imϕ fL(r)YL M (ϑ, ϕ) d3r. (3)

C denotes Clebsch–Gordan coefficients resulting from a decomposition of |L, J, F, Fz 〉 into

products |L,M〉u J= 3
2 ,Jz

, M = −L, . . . , L, and YL M (ϑ, ϕ) =
√
(2L+1)(L−M)!

4π(L+M)! P M
L (cosϑ)eiMϕ .

The matrix elements between �6 and �8 Bloch states in the bulk material are:

〈R0,
1
2 ,

1
2 , jz| p̂1,±1|R1,

1
2 ,

3
2 , Jz〉 = −

√
3
2 C

1
2 , jz
3
2 ,Jz ,1,±1

{
1 1

2
3
2

1
2 1 0

}
〈R0‖ p̂1‖R1〉 = C

1
2 , jz
3
2 ,Jz,1,±1

p

where p is a constant, the same for all matrix elements. Noticing that the integral in (3) is
proportional to δm,M , we finally find that

〈ψn,N,m, jz | p̂1,±1|χ 3
2 ,Fz

〉 = p
∑

L=0,2

C
3
2 ,Fz

L ,m, 3
2 ,Fz−m

C
1
2 , jz
3
2 ,Fz−m,1,±1

√
(2L + 1)(L − m)!

4π(L + m)! In,L ,N,m, (4)

where In,L ,N,m = ∫
Pm

L (cosϑ)ψ∗
N,m(r sinϑ)ψ∗

n (z0 + r cosϑ) fL(r)r 2 dr d cosϑ .
The first form of the matrix element in equation (3) allows one to write down the general

selection rule for the transition investigated: m + jz = Fz ± 1. Next, because L = 0, 2,
|m| � 2. Additionally, m � N . The resulting selection rules are shown in figure 4(a) for the
L = 0 model and in figure 4(b) for the L = 0, 2 model. In the case of the L = 0 model, the
selection rules are independent of the Landau level number, N . For the L = 0, 2 case, this is
true for N � 2 only. A different number of transitions for N = 0, 1 for σ+ and σ− results
from the condition m � N .

The intensity observed in the σ± polarization is equal to

Iσ± = �
∑

N,m, jz

∑

Fz=± 1
2 ,± 3

2

wN,m, jzwi |〈ψn,N,m, jz | p̂1,±1|χ 3
2 ,Fz

〉|2, (5)
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Figure 4. Selection rules for the �6 → �8 transitions. Solid lines: σ−, dashed lines: σ+. Electron
levels are described by jz = ±1/2, and hole levels by Fz = ±3/2,±1/2. Splitting of levels in a
magnetic field is shown schematically only. (a) Selection rules for the L = 0 model of the acceptor
envelope; (b) selection rules for the L = 0, 2 model of the envelope. N denotes the number of the
Landau level and it is shown for what range of N a given transition is allowed.

where � is a polarization-independent factor. Statistical weights wi describe the probability of
occupation of acceptor Zeeman levels: wi = exp[(E1 − Ei )/kBT ]/∑

i exp[(E1 − Ei )/kBT ],
where E1 is the energy of the lowest-lying level. Statistical weights for electron levels,wN,m, jz ,
are equal to 1 because we consider only an equal number of fully occupied Landau levels with
spin up and spin down. We used the above formulae to calculate γC for B from 1 to 4 T and for
ns from 0.86 × 1011 cm−2 to 2.77 × 1011 cm−2, which corresponds to the ranges of B and ns

of interest.
Results of the calculations are shown in figure 3(b). If the L = 2 part of an acceptor

envelope is neglected, then γC does not depend on ns—the corresponding points are shown for
ns = 0. Taking into account the L = 2 part, one gets a decrease of γC with an increase of ns.

There is an overall difference in measured and calculated γC values (compare figures 3(a)
and (b)) which we attribute to a depolarization by the experimental system. What is essential
for our considerations, however, is a dependence of γC on ns for a constant B . Since the
depolarization is constant at given B , we compare the measured results with the calculated
results by shifting down the linear fits in figure 3(b) by an appropriate value to get fits that
coincide with experimental data in figure 3(a). One can observe that variations of γC(ns)

predicted by the L = 0, 2 model are in a quantitative agreement with measured dependences.

5. Discussion: the Stark and Pockels effects

Although the calculations presented in section 4 explain variations of the γC(ns) measured, we
would like to show, before drawing the final conclusions, that other possible sources of the
γC(ns) dependence can be neglected. We use in the following the L = 0 model, since we are
interested now only in an estimation of the magnitude of possible effects. There are two factors
that can contribute to a γC(ns) dependence: the heterostructure electric field and an internal
stress. An internal stress, however, is practically absent in lattice-matched heterostructures,

7
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and it can be neglected as well as stress-induced piezoelectric fields. The heterostructure
electric field, E , causes two effects that can, in principle, lead to a γC(ns) dependence: the
Stark effect and the Pockels effect. It will be shown below that both the effects double the
number of allowed transitions shown in figure 4(a): each of transitions becomes active in
both polarizations. This leads, in principle, to a decrease of γC as a function of E . In the
following, the Stark and Pockels effects are discussed as a function of the electric field, E ,
but it is understood that E is coupled unequivocally to ns. An appropriate relation can be
established by self-consistent calculations of the heterostructure electrostatic potential, as was
done in the present paper.

The Stark effect is a first-order perturbation on an acceptor bound hole. In the case
of the electric field E and the magnetic field B in the z-direction, one has a perturbation
Hamiltonian [5]:

H ′ = μ0(g1
′ Jz + g2

′ J 3
z )B + p√

3
E(Jx Jy + Jy Jx), (6)

where μ0 is the Bohr magneton, g1
′ and g2

′ are isotropic and anisotropic g-factors, respectively,
and pd is the dipole moment of a Be acceptor.

Within the L = 0 model assumed in this section, the unperturbed acceptor wavefunctions
are f0u J= 3

2 ,Jz
. In this basis, the Hamiltonian (6) takes the form

H ′ =
⎡

⎢
⎣

b1 0 iεL 0
0 b2 0 iεL

−iεL 0 −b2 0
0 −iεL 0 −b1

⎤

⎥
⎦ (7)

where b1 = μ0(
3
2 g1

′ + 27
8 g2

′)B , b2 = μ0(
1
2 g1

′ + 1
8 g2

′)B describe the linear Zeeman effect and
εL = pd E describes the linear Stark effect. Mixing of u J= 3

2 ,
3
2

with u J= 3
2 ,− 1

2
and u J= 3

2 ,
1
2

with
u J= 3

2 ,− 3
2

makes each of transitions shown in figure 4(a) active in both circular polarizations,
which is a reason for the decrease of γC with an increase of E .

A detailed discussion of a γC(E) dependence resulting from the Hamiltonian (7) is given
in [6], where conditions for observation of the Stark effect in acceptor δ-doped heterostructures
are specified. In brief, it is shown that observation of the Stark effect is possible by
magnetoluminescence polarization spectroscopy on heterostructures with the δ-layer placed
at about 20 nm from the interface at temperatures of about 100 mK and magnetic fields below
1 T. Essential results are summarized in figure 5. For the range of ns considered, the electric
field at the position of the δ-layer at 30 nm from the interface is practically independent of ns

(figure 5(a)) and too weak to cause observable changes in γC (figure 5(b)). We thus conclude
that the Stark effect in the heterostructure investigated is too small to lead to γC(ns) observed.
The above estimation is based on the L = 0 model, but taking into account the L = 2 part
of the envelope leads to considering higher-order effects, which does not change the above
conclusion.

Let us discuss now the Pockels effect, i.e., the birefringence induced by the electric field. In
the case considered of a crystal of the Td symmetry and the electric field in the [001] direction,
a difference in optical constants is induced for photon polarization parallel to the [110] and
[110] directions. This leads to a linear polarization of optical transitions, with the degree
of polarization defined as γL = (I[110] − I[110])/(I[110] + I[110]), where I[110] and I[110] are
intensities of light observed for a given polarization. A phenomenological description of the

optical anisotropy [8] shows that γL and γC are related to each other: γC ∼
√

1 − γ 2
L , which

means that an increase of γL induced by the electric field correlates with a decrease of γC. This
explains why, in principle, the Pockels effect can be responsible for the γC(ns) dependence
observed.

8
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Figure 5. The heterostructure electric field for ns = 0.35 × 1011 cm−2 (thin line) and
2.77 × 1011 cm−2 (thick line). (a) The electric field at z0 = 30 nm as a function of the electron
concentration ns. The dashed line is a guide to the eyes. (b) The γC(B) dependence calculated
on the basis of energies and wavefunctions obtained by diagonalization of the Hamiltonian given
by equation (7) at 1.6 K and for4 pd = 1D (1D = 3.3 × 10−30 C m). γC for E = 0 and
E = 1.9 × 105 V m−1 cannot be distinguished in the scale of the figure.

An analysis of the Pockels effect carried out in connection with optical transitions in
quantum wells [8–11] involves valence band holes and cannot be directly applied in the present
case, because valence band holes do not participate in the optical transition analysed. Rössler
and Kainz showed, however, that taking into account the kp coupling of bands, perturbation
of the valence band by a Hamiltonian proportional to {Jx , Jy} leads to a [110] versus [110]
anisotropy of the conduction band in the third order of perturbation [12]. Starting from a
perturbation Ha = G E(Jx Jy + Jy Jx), one gets the following effective perturbation of the
conduction band:

Hc = G
P2

E2
0

{(
1

3
+ 2

3

E0

E0 +�

)
E(z)kxky I2x2

+ i

(
1

6
− E0

6(E0 +�)

)
[kz, E(z)](kxσx − kyσy)

}
, (8)

where G is of the order of 10−9 eV cm V−1 ∼ 1D [13]. I2×2 is a two-dimensional unit
matrix, ki are components of the electron wavevector, and σi are Pauli spin matrices. P =
10.493 eV Å is the Kane matrix element of the optical transition, E0 = 1.52 eV is the GaAs
energy gap, and � = 0.341 eV is the spin–orbit splitting in GaAs (numerical values are taken
from table D.1 of [14]). The diagonal terms of Hc are of C2v symmetry, and they describe the
anisotropy of the conduction band resulting from the Pockels effect5. Since the perturbation
Hamiltonian is of the same form as that of equation (6), the Pockels effect leads to selection
rules as in the case of the Stark effect.

To estimate the upper limit of the Pockels effect, we take k equal to the Fermi vector for
the highest concentration considered in calculations, 2.77 × 1011 cm−2, and the maximal value

4 Since the value of pd for a Be acceptor in GaAs is apparently not known, we assumed in calculations pd = 1D,
which is of the order of dipole moments found by Köpf and Lassmann for several shallow acceptors in Si [7].
5 The off-diagonal terms describe the spin splitting and are neglected in the present analysis since we consider an
equal number of electrons with spin up and spin down. On the other hand, they are as small as the diagonal terms are,
and can be neglected due to their negligible influence on electron wavefunctions.
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of E for this ns. Taking kx = ky = kF/
√

2 = 9.7 × 107 m−1 and E = 3 × 106 V m−1 (see
figure 5) one finds the perturbation energy of each of the conduction band states to be of the
order of 10−5 meV. This energy is far too small to indicate any observable changes in electron
wavefunctions. This means that a [110] versus [110] anisotropy of electron wavefunctions can
be neglected6. Thus we have shown that the heterostructure electric field is too small to change
γC in a noticeable way.

The above discussion allows us to conclude that the source of the γC(ns) dependence
observed is the presence of the L = 2 part of the acceptor envelope wavefunction. According
to the results presented in figure 3, to observe a decrease in γC of 1%, ns should change by
about 1011 cm−2. This explains why a γC(ns) dependence was not observed in [1] which reports
investigation on samples with ns below 1011 cm−2. Let us also note that the methodology of the
present paper is just the opposite to that of [1]: we consider a 2DEG with defined (equal to zero)
spin polarization and we analyse γC to study the properties of a Be acceptor. This approach
allows us to show that an interband polarization spectroscopy in δ-doped heterostructures can
be used to investigate the structure of the ground state of shallow acceptors.

The intensity of additional transitions allowed within the L = 0, 2 model is, in general,
a few orders of magnitude smaller than of those allowed within the L = 0 model. Additional
transitions appear because the electron wavefunction ψn(z) is not constant within the volume
spanned by the L = 2 part of the acceptor envelope. In the present analysis we neglected cubic
corrections to the acceptor ground state [15]. Within the cubic model, the acceptor envelope
is described by a series including spherical harmonics with all even L values. In such a case,
any pair of electron and hole levels in figure 4 would be connected by a transition allowed in
both circular polarizations. We expect, however, that transitions additional to these shown in
figure 4(b) are negligible, since they result from higher-order perturbations to the L = 0, 2
model.

6. Summary and conclusions

Low-temperature polarized magnetoluminescence experiments on a high-quality GaAs/AlGaAs
heterostructure with a Be acceptor δ-layer incorporated into the GaAs channel were carried out.
A metallic gate prepared on the sample surface allowed us to tune the 2DEG concentration in
the heterostructure. The degree of circular polarization of the luminescence originating from
transitions between the 2DEG and photoexcited holes bound to Be acceptors was analysed. We
observed that γC decreases with the increase of ns. We discussed three mechanisms that can,
in principle, explain the γC(ns) dependence observed: the presence of an L = 2 part of the ac-
ceptor envelope wavefunction, the Stark effect on a Be-localized hole, and an in-plane optical
anisotropy induced by the heterostructure electric field (the Pockels effect). An analysis of the
Stark and Pockels effects showed that they can be neglected in the heterostructure investigated.
Calculations of γC(ns) taking into account the L = 2 part of the acceptor envelope allowed
us to explain the γC(ns) dependence quantitatively. We thus show that interband polarization
spectroscopy in acceptor δ-doped heterostructures allows one to investigate the ground state of
shallow acceptors in bulk GaAs.
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